
For bulk order, please contact sales@worldronemarket.com and we will provide the best service and price for you. Thank you! Dismiss
Note: The battery monitoring features of PX4 can only be used if you have compatible hardware. In most cases this means a power module that measures the battery voltage, and may also measure the current between battery and vehicle.
The goal of the power setup is to provide a good estimate of remaining battery percentage (and capacity), so that the vehicle is not used to the point that it runs out of power and crashes (or the battery is damaged due to deep-discharge).
PX4 provides a number of (progressively more effective) methods that can be used to estimate the capacity:
Later methods build on preceding methods. The approach you use will depend on whether the vehicle’s power module can measure current.
Note:The instructions below refer to battery 1 calibration parameters: . Other batteries use the parameters, where is the battery number. All battery calibration parameters are listed here.BAT1_*
BATx_*
x
TIP:In addition to PX4 configuration discussed here, you should ensure that the ESC’s low voltage cutoff is either disabled or set below the expected minimum voltage. This ensures that the battery failsafe behaviour is managed by PX4, and that ESCs will not cut out while the battery still has charge (according to the “empty-battery” setting that you have chosen).
TIP
Battery-Type Comparison below explains the difference between the main battery types, and how that impacts the battery settings.
The basic battery settings configure PX4 to use the default method for capacity estimate. This method compares the measured raw battery voltage to the range between cell voltages for “empty” and “full” cells (scaled by the number of cells).
Note:This approach results in relatively coarse estimations due to fluctuations in the estimated charge as the measured voltage changes under load.
To configure the basic settings for battery 1:
You are presented with the basic settings that characterize the battery. The sections below explain what values to set for each field.
For other drone accessories, please go here.
Note:At time of writing QGroundControl only allows you to set values for battery 1 in this view. For vehicles with multiple batteries you’ll need to directly set the parameters for battery 2 (), as described in the following sections.BAT2_*
This sets the number of cells connected in series in the battery. Typically this will be written on the battery as a number followed by “S” (e.g “3S”, “5S”).
Note:The voltage across a single galvanic battery cell is dependent on the chemical properties of the battery type. Lithium-Polymer (LiPo) batteries and Lithium-Ion batteries both have the same nominal cell voltage of 3.7V. In order to achieve higher voltages (which will more efficiently power a vehicle), multiple cells are connected in series. The battery voltage at the terminals is then a multiple of the cell voltage.
If the number of cells is not supplied you can calculate it by dividing the battery voltage by the nominal voltage for a single cell. The table below shows the voltage-to-cell relationship for these batteries:
Cells | LiPo (V) | LiIon (V) |
---|---|---|
1S | 3.7 | 3.7 |
2S | 7.4 | 7.4 |
3S | 11.1 | 11.1 |
4S | 14.8 | 14.8 |
5S | 18.5 | 18.5 |
6S | 22.2 | 22.2 |
Note:This setting corresponds to parameters: BAT1_N_CELLS and BAT2_N_CELLS.
This sets the nominal maximum voltage of each cell (the lowest voltage at which the cell will be considered “full”).
The value should be set slightly lower that the nominal maximum cell voltage for the battery, but not so low that the estimated capacity is still 100% after a few minutes of flight.
Appropriate values to use are:
Note:The voltage of a full battery may drop a small amount over time after charging. Setting a slightly-lower than maximum value compensates for this drop.
Note
This setting corresponds to parameters: BAT1_V_CHARGED and BAT2_V_CHARGED.
This sets the nominal minimum safe voltage of each cell (using below this voltage may damage the battery).
Note:There is no single value at which a battery is said to be empty. If you choose a value that is too low the battery may be damaged due to deep discharge (and/or the vehicle may crash). If you choose a value that is too high you may unnecessarily curtail your flight.
A rule of thumb for minimum per-cell voltages:
Level | LiPo (V) | LiIon (V) |
---|---|---|
Conservative (voltage under no-load) | 3.7 | 3 |
“Real” minimum (voltage under load/while flying | 3.5 | 2.7 |
Damage battery (voltage under load) | 3.0 | 2.5 |
TIP:Below the conservative range, the sooner you recharge the battery the better – it will last longer and lose capacity slower.
Note:This setting corresponds to parameter: BAT1_V_EMPTY and BAT2_V_EMPTY.
If you have a vehicle that measures voltage through a power module and the ADC of the flight controller then you should check and calibrate the measurements once per board. To calibrate you’ll need a multimeter.
The easiest way to calibrate the divider is by using QGroundControl and following the step-by-step guide on Setup > Power Setup (opens new window)(QGroundControl User Guide).
Note:This setting corresponds to parameters: BAT1_V_DIV and BAT2_V_DIV.
TIP:This setting is not needed if you are using the basic configuration (without load compensation etc.)
If you are using Current-based Load Compensation or Current Integration the amps per volt divider must be calibrated.
The easiest way to calibrate the dividers is by using QGroundControl and following the step-by-step guide on Setup > Power Setup (opens new window)(QGroundControl User Guide).
Note:This setting corresponds to parameter(s): BAT1_A_PER_V and BAT2_A_PER_V.
Note:With well configured load compensation the voltage used for battery capacity estimation is much more stable, varying far less when flying up and down.
Load compensation attempts to counteract the fluctuation in measured voltage/estimated capacity under load that occur when using the basic configuration. This works by estimating what the voltage would be for the unloaded battery, and using that voltage (instead of the measured voltage) for estimating the remaining capacity.
Note:To use the load compensation you will still need to set the basic configuration. The Empty Voltage (BAT_V_EMPTY) should be set higher (than without compensation) because the compensated voltage gets used for the estimation (typically set a bit below the expected rest cell voltage when empty after use).
PX4 supports two load compensation methods, which are enabled by setting either of the two parameters below:
This load compensation method relies on current measurement to determine load. It is far more accurate than Thrust-based Load Compensation but requires that you have a current sensor.
To enable this feature:
TIP:There are LiPo chargers out there which can measure the internal resistance of your battery. A typical value is 5mΩ per cell but this can vary with discharge current rating, age and health of the cells.
This load compensation method estimates the load based on the total thrust that gets commanded to the motors.
Note:This method is not particularly accurate because there’s a delay between thrust command and current, and because the thrust in not linearly proportional to the current. Use Current-based Load Compensation instead if your vehicle has a current sensor. :::
To enable this feature:
Note:This is the most accurate way to measure relative battery consumption. If set up correctly with a healthy and fresh charged battery on every boot, then the estimation quality will be comparable to that from a smart battery (and theoretically allow for accurate remaining flight time estimation).
This method evaluates the remaining battery capacity by fusing the voltage-based estimate for the available capacity with a current-based estimate of the charge that has been consumed. It requires hardware that can accurately measure current.
To enable this feature:
TIP:Including calibrating the Amps per volt divider setting.
Note:Do not set this value too high as this may result in a poor estimation or sudden drops in estimated capacity.
Additional information
The estimate of the charge that has been consumed over time is produced by mathematically integrating the measured current (this approach provides very accurate energy consumption estimates).
At system startup PX4 first uses a voltage-based estimate to determine the initial battery charge. This estimate is then fused with the value from current integration to provide a combined better estimate. The relative value placed on each estimate in the fused result depends on the battery state. The emptier the battery gets, the more of the voltage based estimate gets fused in. This prevents deep discharge (e.g. because it was configured with the wrong capacity or the start value was wrong).
If you always start with a healthy full battery, this approach is similar to that used by a smart battery.
Note:Current integration cannot be used on its own (without voltage-based estimation) because it has no way to determine the initial capacity. Voltage-estimation allows you to estimate the initial capacity and provides ongoing feedback of possible errors (e.g. if the battery is faulty, or if there is a mismatch between capacity calculated using different methods).
Multiple battery support was added after PX4 v1.10, resulting in the creation of new parameters with prefix corresponding to all the old parameters with prefix . Changes to and are currently synchronised:BAT1_
BAT_
BAT_
BAT1_
BAT_
BAT1_
This section provides a comparative overview of several different battery types (in particular LiPo and Li-Ion).
LiPo
Li-Ion
LiPo
Li-Ion
This tutorial is selected from PX4.